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Abstract 

The behavior of separation axioms under perfect mappings has been studied in the realm of 

topological spaces. In this paper, we extend the characterization of perfect mappings to isotonic 

spaces and then use this class of continuous functions to investigate the behavior of separation 

axioms.The hierarchy of separation axioms that is familiar from topological spaces generalizes to 

spaces with an isotone and expansive closure functions. Neither additivity nor idempotence of 

the closure function need to be assumed. 

 

  

                                                 

 Egerton University, Egerton, Kenya 



               IJESM           Volume 2, Issue 4           ISSN: 2320-0294 
_________________________________________________________         

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics 
http://www.ijmra.us 

 
33 

December 

2013 

1. Introduction  

The concept of a topological space is generally introduced and studied in terms of the axioms of 

open sets. However, alternate methods of describing a topology are often used; neighborhood 

systems, family of closed sets, closure operator and interior operator. Of these, the closure 

operator, records Kelley (1955), was axiomated by Kuratowski. He associated a topology in a 

closure space by taking closed sets as the sets which are fixed with respect to closure operation, 

that is,   is closed if        . It is also found that        is the smallest closed set containing 

   

The class of continuous functions forms a very broad spectrum of mappings comprising of 

different subclasses with varying properties. Perhaps of greater interest in topological spaces is 

the class of homeomorphisms, which is classically used to study equivalent classes of topological 

spaces. In the spectrum of continuous functions is the class of perfect mappings which, although 

weaker than homeomorphisms, provides a general yet satisfactory means of investigating 

topological invariants and hence the equivalence of topological spaces. It can therefore be used 

in substitution of homeomorphisms.  

In an attempt to extend the boundaries of topology, Mashhour and Ghanim (1983), have shown 

that topological spaces do not constitute a natural boundary for the validity of theorems and 

results in topology. Moreover, Joshi (1983) remarks that when a branch of mathematics gets rich 

in terms of depth and applicability, people begin to investigate whether some of the basic axioms 

can either be dropped totally or at least be replaced by some weaker ones. Many results 

therefore, can be extended to closure spaces where some of the basic axioms in this space can be 

dropped. On the other hand, almost all approaches to extend the framework of topology, 

including Hammer (1964), at least use the closure function with the assumption that it is isotonic. 

Consequently, many properties which hold in basic topological spaces hold in spaces possessing 

the isotonic property. 

 

2. Literature review 

2.1 Closure Operator and Generalized Closure Space 

A closure operator is an arbitrary set-valued, set-function               where      is the 

power set of a non-void set   (Thron, 1981). Consequently, various combinations of the 
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following axioms have been used in the past in an attempt to define closure operators (Sunitha, 

1994). Let         .  

i. Grounded:         

ii. Expansive:        

iii. Sub-additive:                   . This axiom implies the Isotony axiom:     

                                    

iv. Idempotent:   (     )        

The structure      , where    satisfies the first three axioms is called a closure space. If in 

addition the idempotent axiom is satisfied, then the structure is a topological space. 

 

2.2 Isotonic Space 

A closure space        satisfying only the grounded and the isotony closure axioms is called an 

isotonic space (Elzenati and Habil, 2006). This is the space of interest in this study and clearly, it 

is more general than a closure space. 

In the dual formulation, a space        is isotonic if and only if the interior function          

     satisfies; 

i.         . 

ii.       implies                

2.3 Interior Function 

From Elzenati and Habil (2008), the dual of the closure function, called the interior 

function,             , is defined by   

                            

Given the interior function,               the closure function is recovered by 

                     

 

2.4 The Open-Set Topology and the Closure Operator Topology 

According to Mashhour and Ghanim (1983), if   is the set of all Kuratowski closure operators   

that can be defined on a set   and Ψ is the set of all topologies τ which can be defined on  , 

then; 

a) Denote by        the function defined by          , where  
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b) Denote by       the function defined by        , where  

     is the τ-closure of    

Clearly,   maps the closure operator in   to open sets and hence open topology in Ψ  Similarly,   

maps the topologies (open sets) in Ψ to the closures of these open sets in    Therefore, the 

topological structure obtained by the Kuratowski closure operator and that obtained by a family 

of open sets are completely equivalent, provided the transition from one to the other is by means 

of functions   and    

2.5 Continuity in Closure Spaces 

Let         and         be two closure spaces with arbitrary closure functions. Let       be 

a function from   to     According to Stadler and Stadler (2003),   is said to be continuous if the 

following equivalent conditions are satisfied; 

i.   (      )     (     )          

ii.    (      )     (      )         

iii.    (    )                                    

Theorem: if         and         are isotonic spaces and       is a bijection, then   is a 

homeomorphism if and only if  (      )       (   )          

 

2.6 Perfect Mappings  

The class of perfect mappings was introduced in metric spaces by Vainstein in 1947 (Engelking, 

1989). More studies by Frolik (1960), showed the central role that perfect mappings play among 

all continuous functions; a role similar to that of compactness among topological spaces. He did 

this by proving that the Cartesian product of perfect mappings is perfect. This theorem is 

analogous to the Tychonoff theorem of compact spaces. Throughout the 20
th

 century, many 

theorems on perfect mapping were formulated and proven. This include a theorem by Henriksen 

and Isbell (1958) showing that complete regularity is not an inverse invariant of perfect 

mappings, although it had earlier been shown that regularity is an inverse invariant of perfect 

mappings. 
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2.7 Compactness 

The notion of compactness has been characterized,in closure spaces, using nets and filters as well 

as by means of covers by Cech (1966).  

A closure space        is compact if each net in   has an accumulation point. This notion of 

compactness has also been reinforced by Mresvic (2001). Equivalently, Thron (1981), provided 

the following definition. Let        be a closure space. A family          of subsets of   is 

called a  -cover of   if             covers  . A closure space is  -compact if every  -cover of 

  has a finite subcover. We will adopt this latter definition. 

 

3. Main Results 

In this section, the results of the study have been given. 

3.1 Perfect mappings on isotonic spaces 

Perfect mappings are always assumed to be defined on Hausdorff spaces. In this section, this 

class of continuous functions is defined beginning with characterizations of closed mappings and 

compactness in isotonic spaces. 

3.1.1 Closed mapping 

A closed function maybe defined in different equivalent ways. The choice of which 

characterization one will use in a given instance depends on which definition best describes the 

notion of a closed mapping in that particular setting. In this research, an equivalent 

characterization that adopts the dual of the closure operator in closure spaces is established.  

Definition  

Let       be a continuous mapping from an isotonic space   to an isotonic space  .  is said 

to be closed if for every set   open  in   the set       (        ) is open in  . 

Classically, if a function is closed, then it guarantees that a closed set in the domain will always 

be carried to a closed set in the co-domain by that function. In the above definition, the set 

                 is open in   hence the set          is closed in   since the 

complement of an open set is closed. 

If        (        ) is open in   then  (        ) is closed in  . Therefore,   takes 

the closed set          to the closed set  (        ). Clearly, if       (        ) 
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is open in   for every   open in  , then   is closed.  Therefore, this is an alternative way of 

defining a closed mapping in isotonic spaces and more broadly, in closure spaces. 

 

3.1.2 Compactness 

Having established a definition for a closed mapping in an isotonic space, compactness becomes 

the next notion of interest. However, compactness in an isotonic space has previously been 

defined. That definition can be found in section 2.7 of this thesis. Nevertheless, this topological 

notion may as well be characterized via open refinements. In order to do this, it is necessary to 

extend the definition of open refinement from topological spaces in a similar way as Thron 

(1981) did for open covers. This extension is provided in the definition below. 

 

Definition  

Let            be a c-cover for an isotonic space       . Then another c-cover,  

          is an open refinement of   if for every      there exists     such that 

           . 

It is clear from the definition of open refinement and from section 2.7 that a  -isotonic space   

is c-compact if and only if every c-cover of   has a finite refinement. This definition can be used 

in place of the one employed by Thron (1981) in instances where it is easier to talk of open 

refinements than it is for open covers.  

Attention now turns to defining the class of perfect mappings in isotonic spaces. However, it is 

important to define a c-compact mapping before giving a definition for a perfect map. The 

definitions below are those of a c-compact mapping as well as of a perfect mapping. 

 

Definition  

Let   and   be isotonic spaces and       be a continuous surjective mapping.  is called a c-

compact mapping if        is a c-compact subset of      .  

A continuous surjective mapping between two isotonic spaces is said to be perfect if it is closed 

and              is a c-compact subset of  .  

These two definitions closely correlate with their definitions in general topological spaces, 

except for the fact that a different approach is employed while defining the foregoing topological 

notions. 
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3.1.3 Perfect mappings and homeomorphisms 

From general topological spaces, it is known that the class of homeomorphisms is used to 

investigate topological invariants. In this study, this class is abandoned and in its place, a weaker 

class of perfect mappings is adopted. However, it may be prudent to probe the extent to which 

these two classes of mappings are different. To begin with, it is known from literature that these 

two classes fall under the broad spectrum of continuous functions and their difference only sets 

in while including additional topological notions. The theorem below gives the conditions under 

which the two classes are equivalent.   

Theorem 

Let                   be a continuous bijection from a c-compact isotonic space   to an   -

isotonic space  , then the following two conditions are equivalent: 

i.  is a perfect mapping and hence a homeomorphism. 

ii.  (      )     (    )        . 

Proof: 

To show that   is perfect, we only need to prove that   is closed. Let   be closed in    This 

implies that        and                ,  is open in  .  

      (     )but                 

Hence,                          (        ), where        and        

               .   

Therefore              which is closed in  .  is closed and hence perfect.  

To show that   is a homeomorphism, we only need to prove that   is bicontinuous by showing 

that     is continuous which is equivalent to showing that for every   closed in  ,      is 

closed in  . Let     be closed, then by c-compactness of     is c-compact. Since   is 

continuous, then     is c-compact. Moreover,   is Hausdorff, hence      is closed. Therefore 

 isbicontinuous and thus a homeomorphism. The theorem under section 2.5, gives the necessary 

and sufficient conditions for the existence of a homeomorphism in isotonic spaces. Therefore, 

since   is a homeomorphism, then condition (ii), in the theorem above must hold, that 

is,  (      )     (    )        . 
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3.1.4 Local c-compactness. 

In general topological spaces, topologists tend to look at the local formulation of topological 

properties. This is because some important spaces in analysis may not possess the property of 

interest but may instead possess its local version (Dungdji, 1966). When a particular topological 

property is used to define another topological notion, then it’s interesting to explore the kind of 

notion that will result from replacing the property with its local version. In the definition of 

perfect mappings, c-compactness is used to describe the one-point fibers. It would be interesting 

to find out what kind of mapping is obtained by requiring the one-point fibers to be locally c-

compact instead of c-compact. Below is a formulation of local compactness in closure spaces.    

 

Definition 

An isotonic space        is said to be locally c-compact if      there exists        such 

that          and       is a c-compact subspace of   

This characterization of local compactness follows directly from the definition of local 

compactness in general topological spaces. In this context, local compactness is formulated in 

terms of a relatively compact neighborhood of each point of a Hausdorff space.  

 

Proposition  

Let       be a one-to-one mapping of an isotonic space   to an isotonic space   such that for 

every      there exists         such that               with       a c-compact 

subspace of  . Then   is a locally c-compact mapping. 

3.1.5 k-spaces 

An interesting class of spaces that follows from local compactness and existence of a quotient 

mapping between two spaces is the class of k-spaces. This property of spaces is extended to 

closure spaces and specifically isotonic spaces in the definition below. The theorem that follows 

shows the invariance of local c-compactness and the property of being a k-space. It should be 

remarked here that according to section 2.5, every perfect mapping is a quotient mapping. 

Definition 

An isotonic space        is called a k-space if it is both    and an image of a locally c-compact 

space under a quotient mapping. 
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Having defined the class of k-spaces in isotonic spaces as well as remarked the fact that every 

perfect mapping is a quotient mapping, and then the following theorem can be formulated to 

show the invariance of these properties.   

 

Theorem 

Let       be a perfect mapping of a locally c-compact isotonic space   to a   -isotonic space 

   Then   is a locally c-compact k-space. 

Proof: 

Let      and let         . This is possible since a perfect mapping is surjective. Since   is 

locally c-compact, then there exists        such that          and       is a compact 

subset of  ;       (      ) is a neighbourhood of    , that is         (      )  

Further,  (     ) is c-compact and closed since compactness is invariant of continuous onto 

maps. Therefore,   ( (     ))   (     ) is compact; hence   is locally compact. Moreover, 

  is a k-space since it is an image of a locally c-compact space under the quotient map  . 

Local c-compactness is an invariant of perfect mappings. 

Let   be a k-space. Then   is    and is an image of a locally c-compact. Moreover,   is locally 

c-compact since local c-compactness is an invariant of a continuous mapping. Thus, if     

 is perfect, hence a quotient mapping, then   is also a k-space. These facts give the following 

theorem. 

Theorem  

The property of being a k-space is invariant with respect to perfect mappings whenever the 

codomain of the map is a   -isotonic space. 

 

3.2Invariance of topological properties 

The motivation of topology has always been the study of properties that are fixed with respect to 

some continuous function. This enables the classification of equivalence classes of spaces and 

hence the transfer of problems from one space to another. In basic formulation, topological 

invariants work to simplify the solutions to problems that would otherwise be impossible or 

difficult to solve in a given space. The aim in this section is to characterize the properties that 
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have not been defined in isotonic spaces and then investigate their behavior under perfect 

mappings. 

 

3.2.1  -isotonic space 

Since the assumption in this study is that perfect mappings are defined on    spaces, then the 

investigation of the behavior of    spaces can only be done under a bijective perfect mapping 

which according to theorem 3.1.3 is equivalent to a homeomorphism. This behavior of the    

condition is described in the following theorem:   

Theorem  

The property of being a    -isotonic space is invariant under a bijective perfect mapping. 

 

Proof: 

From theorem 4.2.2, if       is a bijective perfect mapping, then;  

 (      )     (    )        . 

Let   be    and      This implies that         . Therefore,       
                 

since  is   . Hence,             (    
       )   (      

       )                

Clearly             , that is, every singleton set is closed. In conclusion, whenever   is    and 

      is a bijective perfect mapping, then  is   . 

3.2.2   -isotonic spaces 

Hausdorff topologies have the weakest kind of separation that will be considered in this work. 

All spaces will be assumed to be Hausdorff and hence also  . This is a somewhat convenient 

assumption since the class of perfect mappings is also defined at least on Hausdorff topology. 

The Hausdorff topology has several equivalents in general topological spaces. Nevertheless, 

these equivalent definitions have not been extended to closure. The theorem below shows the 

behavior of the    condition under the effect of perfect mapping. 

Theorem  

The property of being a   - isotonic space is invariant under perfect mapping. 

Proof:  

Let   be          such that      This implies               are two disjoint compact 

subsets of  . Therefore there exists                                      with 
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          The sets           and            are open in   since   is closed, such 

that            and             . Moreover,  

[         ]  [          ]    [                ]      [       

      ]     [         ]      [ ]   . 

The Hausdorff property is neither preserved by continuous functions nor by continuous open 

functions. In general topological spaces, the invariance property of Hausdorff topologies hold 

only under closed bijections and under perfect mappings. The theorem above shows the 

consistency of perfect mappings both in general topological spaces and in isotonic spaces.    

  

3.2.3 Regularity 

The regularity axiom was formulated in a bid to resolve certain problems that required stronger 

separation axioms; for instance, the problem regarding the extension of a continuous function. 

The regular condition takes different formulations, both in general topological spaces and in 

isotonic spaces. Since the assumption in this study is that every space that will be considered has 

at least the Hausdorff topology, then the regularity condition coincides with the    axiom. The 

following theorem shows that regularity (resp.   -axiom) is an invariant of perfect mappings.  

 

Theorem  

The property of being a regular (resp.   ) isotonic spaces is invariant under perfect mapping. 

Proof: 

Let   be regular,     and     such that         . Therefore,             

   (      ). Since        is a c-compact subset of   then there exists a family          of 

sets in   such that        ⋃               Similarly, since    (      ) is c-compact, then 

there exists a family          of sets in   such that    (      )  ⋃               Clearly 

the sets   and   are such that                    and                . Since   is 

closed, then       (        )        and       (        )       are 

disjoint sets in   containing   and   respectively. Therefore   is a regular (resp.   ) isotonic 

space. 
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3.2.4 Complete regularity 

Complete regularity in isotonic spaces, and generally in closure spaces, takes a slightly different 

formulation from its definition in general topological spaces. In closure spaces, the concept of 

separation of sets is strengthened via the ‘completely within’ notion and hence instead of talking 

of existence of an Urysohn function, one talks of the existence of a neighborhood that is 

completely within another. However, both formulations are equivalent in the sense that besides 

the set-theoretic notion, both require the notion of a continuous real-valued function. 

In the following theorem, the behavior of complete regularity under perfect mappings is 

explored. 

Theorem  

The property of being a completely regular isotonic space is invariant of perfect mappings. 

Proof: 

Let   be completely regular and       be a perfect mapping. Let for every    ,              

       . Since   is open in   and   is a closed mapping, then            is open in    

Further,  

             ( 
     ). Since   is completely regular then there exists   

  ( 
     ) such that                Moreover,  

      (          )                Clearly            such that   

       hence   is completely regular. 

 

3.2.5 Normality 

In the realm of closure spaces, various kinds of normal spaces exist. This has been made possible 

by the fact that characterization of normal closure spaces has been done both via separated sets 

as well as via an Urysohn separating function. In this section, the effect of perfect mapping is 

restricted to normal spaces and completely normal spaces since the other notions of normality are 

either trivial, for example t-normality, or implied from normal and completely normal spaces.  

The following theorem shows the behavior of the normality axiom with respect to perfect 

mapping 

Theorem  

The property of being a normal space is invariant under perfect mapping 
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Proof: 

Let       be perfect. Let   be such that                       . Thus    (      )  

   (      )     (             )   . Since   is normal then there exists                        

   (   (      )) and    (   (      )) such that      . Since   and   are open 

in   and   is closed, then             and             are open in   such that 

    (     ) and     (     ) with        . Therefore,   is normal. 

Since the Hausdorff condition is assumed, then the    axiom is invariant of perfect mappings as 

well. 

 

3.2.6 Completely Normal Space 

Completely normal spaces are classified under higher separation axioms. In this section, special 

interest is given to the behavior of the relativization operation (subspace operation) of the closure 

function    on a subset of the underlying set of an isotonic space. Complete normality is always 

guaranteed for an isotonic space   whenever any of its subspace is normal in the subspace 

topology. The theorem below shows the relationship between a normal isotonic space and a 

completely normal isotonic space when the closure operator is relativized. 

Theorem 

Let        be an isotonic space and    . If   is normal in the relativization of    to  , then   

is completely normal. 

Proof: 

Since the property of being a normal space is not hereditary in isotonic spaces, then there is no 

guarantee that the subspace of a normal space   in the relativization of    is itself normal. Let 

       be normal and              be the relativization of    to    We show that if   is 

normal, then every pair of semi-separated sets is separated.  

Let       be such that                   and        be normal. Setting      

  and       , then we have     
           and     

          . Since   is 

normal then if     
       

    , there exists     (    
  ) and     (    

  ) such 

that           But         and          where       such that        
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and       . Moreover                             . Therefore 

      hence the semi-separated sets       are separated.   is completely normal. 

Theorem  

Let       be a perfect mapping and   be a completely normal isotonic space; then   is also a 

completely normal space. 

Proof  

Let        be a completely normal isotonic space and       be a perfect mapping of   to an 

isotonic space  . Let       such that                  . Let         and 

       . Now,    (     )          such that; 

    (     )                       . Similarly,          ( 
     ) and 

         ( 
     ). Since   is completely normal then                . On the other 

hand,   is continuous, thus                          . This implies that,  

               . Therefore for       such that                   with 

        and        , we have      . This means that   is completely normal.   

 

3.2.7 Perfect Normality. 

Perfect normality has not been defined in closure spaces. Therefore, different characterizations 

are given under this section as modifications from topological spaces. A few basic concepts have 

to be carried over from general topological spaces before any meaningful definition of perfectly 

normal spaces can be given. 

Preliminary definitions 

A set   is called a   -set if and only if   ⋂   
 
   , where              . A set   is called an 

  -set if   ⋃   
 
    where             .  

In topological spaces, the class of   -set and   -set constitute the most commonly studied 

classes of Borel sets. 

Let       be a continuous function in the closure space       . A subset   of   is said to be a 

functionally closed subset if         . The complement of   is called a functionally open set 

subset. 
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The above definitions have been modified from topological spaces as defined by Engelking 

(1989). The aim of carrying over these topological concepts is so as to facilitate the definition of 

perfectly normal isotonic spaces. 

An isotonic space        is perfectly normal if   is normal and for every subset         of  , 

  is a   -set. That is for every closed set in  ,   ⋂                     
   . 

Equivalently, a normal isotonic space (      is perfectly normal if every open subset of   is an 

  -set. That is, for every set         , then   ⋃                    
   . 

Theorem  

The isotonic space        is perfectly normal if for every       such that        , 

        and              , then   a function     [   ] that precisely separates   and 

 . That is          and         . 

Another definition of perfect mappings is provided via functionally closed (resp. open) sets. In 

this case,   is said to be perfectly normal if for every pair of disjoint closed subsets   and  ,   is 

functionally closed while   is functionally open. 

An isotonic space        is    if it is    and perfectly normal. 

Having defined perfectly normal spaces, investigation of their invariance under perfect mappings 

can follow. 

Theorem 

Perfect normality is invariant of perfect mapping 

Proof 

Let        be a perfectly normal isotonic space and       be a perfect mapping. Let       

with                . Now,                 such that, 

    (      )     (      )     (             )   . Since   is perfectly normal, then 

there exists a continuous function     [   ] such that               and        

      . Let        .  Clearly,     [   ] is continuous. Further                 

and                . Thus,           (    )    and           (    )   . 

      are precisely separated in   and hence   is perfectly normal. 



               IJESM           Volume 2, Issue 4           ISSN: 2320-0294 
_________________________________________________________         

A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics 
http://www.ijmra.us 

 
47 

December 

2013 

Alternatively, let       be a perfect mapping of a perfectly normal space   onto an isotonic 

space  . Since normality is preserved by perfect mappings, then   is normal. For every closed 

set    , then        is closed in   since   is a closed function and        ⋂   
 
   , where 

     are open in  . This is possible since   is perfectly normal and thus every open subset of   is 

a   -set. Hence            ⋂   
 
      ⋂      

 
    .   is a   -set in   and therefore   is 

perfectly normal.  

Clearly, the    condition is invariant of perfect mappings. 

4.0 Conclusion  

The results obtained in this thesis show that the invariance characteristic of separation axioms in 

closure spaces under homeomorphism extends to perfect mappings. 
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